Description
Course Description: Delve into the intricacies of finite element analysis (FEA) applied to vibration and thermal problems through my meticulously crafted UDEMY course, « Finite Element Analysis of Vibration and Thermal Problems using ANSYS and its Theoretical Validation. » Embark on a transformative journey where you will gain comprehensive insights into engineering analysis techniques, leveraging ANSYS, a cutting-edge commercial general-purpose finite element program.
Unlock the potential of ANSYS Mechanical APDL, the bedrock of advanced functionalities concealed within the Workbench Mechanical user interface. Regardless of your background, be it a novice or an experienced Ansys Mechanical user, this course provides a hands-on introduction to the powerful world of FEA. Immerse yourself in a practical and integrated learning experience, seamlessly blending finite element theory with industry best practices for model development, verification, validation, and result interpretation.
Engineers and professionals will relish the profound comprehension this course offers, unraveling the structure and behavior of the ANSYS program. Witness its prowess as we simulate computer models of structures, electronics, and machine components, enabling analysis of attributes such as strength, toughness, elasticity, temperature distribution, fluid flow, and more. Gone are the days of building physical prototypes or conducting crash tests to predict product functionality; ANSYS empowers you to envision various specifications and determine product performance without materializing them physically.
The course comprises two distinct sections, each addressing critical aspects of engineering analysis. The first section immerses you in vibrational analysis of real-world engineering problems using ANSYS Mechanical APDL. Master the nuances of modal analysis and delve into the theoretical validation of a fixed beam, a fixed beam with lumped mass, and a simply supported beam with lumped masses. Explore the harmonic analysis of a stepped bar under cyclic loading and a fixed beam subjected to cyclic loading. Gain expertise in the transient analysis of a beam subjected to step loading.
In the second section, we shift our focus to FEA thermal analysis employing ANSYS Mechanical APDL. Demystify the complex world of thermal phenomena as we investigate the theoretical validation and practical applications of FEA thermal analysis. Dive deep into topics such as thermal analysis of a composite slab, furnace analysis with convection and conduction, composite wall analysis, and thermal analysis of bars with constant heat flux. Furthermore, unravel the secrets of analyzing members with insulated tops and bottoms, composite cylinders, L-shaped objects with different boundary conditions, chimneys using structured and normal meshing techniques, thin films, concentric hemispherical vessels, and ducts with segmented elements.
Throughout the course, you will find an extensive collection of eighteen video modules, each accompanied by real-world applications of diverse analysis types. Moreover, I take great pride in presenting theoretical validations using finite element analysis alongside ANSYS Mechanical APDL.
Unlock the realm of engineering analysis excellence and equip yourself with the knowledge and skills to tackle the most intricate vibration and thermal challenges with confidence. Enroll in my UDEMY course, « Finite Element Analysis of Vibration and Thermal Problems using ANSYS and its Theoretical Validation, » and embark on a journey that will redefine your understanding of FEA.
À qui ce cours s’adresse-t-il ?
Engineering students who want to start their career as a Design Engineer or CAD/CAE/CFD professional can have enough confidence from this course. Engineering Professionals who are already working in industry. Any CAD/CAM/CAE Professional
Afficher plus